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This repository describes the Materials Modeling benchmark using LAMMPS. The OLCF-6 benchmark run rules should be reviewed

before running this benchmark.

This benchmark derives from the Materials by Design Workflow NERSC-10 benchmark (https://www.nersc.gov/systems

/nersc-10/benchmarks/). However, there are major differences in the type of systems considered. Also, there are only

two categories of performance optimization, "ported" and "optimized." This is in contrast to the three categories in the

Materials by Design Workflow.

Note:

• The OLCF-6 Benchmark Run Rules apply to this benchmark except where explicitly noted within this README.

• The run rules herein define the "ported" category of performance optimization. Responses to the OLCF-6 RFP should include

performance estimates for this category; results for "optimized" categories are optional.

• RFP responses should estimate the performance for the target problem on the target architecture. The projected walltime for

the target problem on the target system must not exceed the reference time measured by runnning the reference problem on

Summit.

• Concurrency adjustments (i.e. weak- or strong-scaling) may be needed to match the reference time.

• The "capability factor" (c) descibes the increase in computational work (e.g. flops) between the reference and target problems,

and may be used to guide resource requirements for the target problem.

Materials Simulation Overview

Molecular dynamics (MD) simulations help one understands the properties of matter from the knowledge of the inter-molecular

interactions between the atoms/molecules/particles comprising the system. MD has revolutionized our understanding of materials

in domains as diverse as biology, chemistry, physics, and material science. Modeling materials requires being able to describe both

short-range and long-range interactions, each of which stresses different aspects of the computational approach, and thus different

aspects of the computing architechture itself. To this end, the Materials Modeling benchmark uses two sub-problems, one that

stresses the balance of short- and long-range interactions, and another that stresses short-range interactions involving changes that

occur at a fast time-scale.

Liquid water is the solvent matrix for all biological processes, and to understand how biomolecules function, it is essential to

understand the properties of water itself. A proper description of the thermodynamics of water depends on the correct description

of the balance of long-range and short-range forces. This is in constrast to other so-called van der Waals fluids that can be well

described by simply accounting for short-range interactions. Thus, the first of the two benchmarks comprising the OLCF-6 Materials

benchmark involves the modeling of liquid water at room temperature.

Biology also relies on chemical transformations, and chemical transformations involve bond making/breaking. The most rigorous

description of chemical transformations require electronic structure calculations. However, much progress can be made by using an

empirical description of reactivity. One such approach is the so-called ReaxFF approach. In ReaxFF, one identifies the distribution of

atoms around a given atom, assesses the bond order, iteratively equilibrates the charge distribution, and uses this information to

drive the next step in the dynamics. Clearly, the ReaxFF approach stresses the local (short-range) interactions. Thus, the second of

the two benchmarks comprising the OLCF-6 Materials benchmark involves the ReaxFF modeling of Pentaerythritol tetranitrate

(PETN), an explosive material and a good test case for modeling reactive transformations at short time scales.

Code access and compilation

The process of building the benchmark has three basic steps: obtaining the source code, configuring the build system, and

compiling the source code. The build instructions in this sections follow the build_lammps_cpu.sh script, which is suitable for a

generic Linux workstation without a GPU accelerator. Detailed instructions for compiling the code on OLCF's Summit

supercomputer using just CPUs and with GPU acceleration can be found in the build directory of this repository.

Obtaining LAMMPS source code

The required LAMMPS version used for this benchmark, update 4 of version 23 June 2022, is provided with this benchmark

distribution. For reference, it was obtained using the commands below. Optimized runs may use custom modifications of LAMMPS.

git clone https://github.com/lammps/lammps.git lammps_src

cd lammps_src/

git checkout stable_23Jun2022_update4

Kokkos version 3.6.01 is distributed with and used by this LAMMPS version. Optimized results may use later versions of Kokkos or

custom Kokkos backends optimized for the target architecture, as well as code modifications that are expressed in languages or

abstractions other than Kokkos.
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Configuring the LAMMPS build system

LAMMPS uses the CMake tool to configure the build system and generate the makefiles. From within the lammps_src directory, run

the CMake commands that is most appropriate for your compute architecture. The example below is suitable for generic Linux

workstation without a GPU accelerator. Additional cmake options that may be useful when customizing for other

systems/architectures can be found in chapter 3 of the LAMMPS User Guide.

cmake -D CMAKE_INSTALL_PREFIX=$PWD/../install_cpu/ \

      -D CMAKE_CXX_COMPILER=g++ \

      -D CMAKE_Fortran_COMPILER=gfortran \

      -D BUILD_MPI=yes \

      -D MPI_CXX_COMPILER=mpicxx \

      -D PKG_USER-OMP=ON \

      -D PKG_KOKKOS=ON \

      -D DOWNLOAD_KOKKOS=ON \

      -D Kokkos_ARCH_FIXME=ON \

      -D PKG_ML-SNAP=ON \

      -D CMAKE_POSITION_INDEPENDENT_CODE=ON \

      -D CMAKE_EXE_FLAGS="-dynamic" \

      ../cmake

LAMMPS configuration used in Summit benchmark

LAMMPS Version

This benchmark was constructed using the LAMMPS commit 59e8b9370f, which at the time of writing corresponds to the tag

patch_23Jun2022_update4. See https://docs.lammps.org/Build_make.html (https://docs.lammps.org/Build_make.html) for more

information about building LAMMPS with the Make-based build system.

Required Packages

The supplied LAMMPS benchmarks require the following packages:

• KSPACE -- for PPPM

• MOLECULE -- for atom_style full

• REAXFF -- for ReaxFF potential

• RIGID -- for fix shake

And additional packages for acceleration:

• KOKKOS -- for CPU (OpenMP) and GPU acceleration or

• OPENMP -- for CPU-based acceleration

Software Prerequisites

• A C++14 capable compiler

• GNU make

• Optional: hwloc

• Optional: LAMMPS-supported FFT library for KSPACE (ie, FFTW3)

How to Build:

There are 2 build scripts provided:

• build_lammps_rfp.sh -- builds an OpenMP-accelerated binary of LAMMPS using FFTW3 for FFTs.

• build_lammps_gpu.sh -- builds a GPU-accelerated binary of LAMMPS using Kokkos with both CUDA and OpenMP backends, and

FFTW3 for FFTs.

build_lammps_rfp.sh

This script sets up the environment used on the Summit POWER9 supercomputer at Oak Ridge National Laboratory (ORNL) for

CPU-only runs. The Makefile, which is located in makefiles/Makefile.summit_cpu, uses the GCC g++ compiler & linker. The build

script copies this script into lammps/src/MAKE/MINE/Makefile.summit_cpu, where it is found by the LAMMPS build system. To use

the internal LAMMPS KISS-FFT instead of FFTW3, remove the define, include, and link lines in the Makefile.summit_cpu.

build_lammps_gpu.sh

This script sets up the environment used on the Summit POWER9 supercomputer at Oak Ridge National Laboratory (ORNL), with

NVIDIA V100 support. The Makefile, which is located in makefiles/Makefile.summit_gpu, uses the Kokkos nvcc_wrapper for

compilation and linking. The build script copies this script into lammps/src/MAKE/MINE/Makefile.summit_gpu, where it is found by

the LAMMPS build system. To use the internal LAMMPS KISS-FFT instead of FFTW, remove the define, include, and link lines in the

Makefile.summit_gpu. Kokkos is compiled with OpenMP and CUDA support. The PPPM solver utilizes the OpenMP backend of

Kokkos due to poor scaling with the CUDA backend.
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Running the benchmark

Input files and batch scipts for the various systems are provided in the benchmarks directory. Each problem has its own

subdirectory within the benchmarks directory. There the appropriate run scripts are included.

Responses to the OLCF-6 request for proposal (RFP) should provide results (measured or projected) for the "target" problem size.

Figure-of-Merit (FOM) values from OLCF Summit system were evaluated using the "reference" problem size. Other problem sizes

have been provided as a convenience, to facilitate profiling at different scales (e.g. socket, node, blade, or rack), and extrapolation

to larger sizes. This collection of problems form a weak scaling series where each successively larger problem simulates eight times

as many atoms as the previous one. Computational requirements are expected to scale linearly with the number of atoms.

The following table lists the approximate system sizes of each of these jobs. The simulation log files generated on Summit provide

additional details such as memory and number of CPUs/GPUs used (see also the Results section below). The capability factor (c)

parameter is an estimate of the computational complexity of the problem relative to the "reference" problem.

SPC/E water simulations

Index Size Replication factor # atoms Capability factor

0 Tiny 48 x 48 x 48 5.308 M 1/83

1 Small 96 x 96 x 96 42.467 M 1/82

2 Medium 192 x 192 x 192 339.738 M 1/81

3 Reference 384 x 384 x 384 2.7179 B 1

4 Target 768 x 768 x 768 21.743 B 8

PETN ReaxFF simulations

Index Size Replication factor # atoms Capability factor

0 Nano 35 x 35 x 35 2.487 M 1/83

1 Tiny 70 x 70 x 70 19.894 M 1/82

2 Small 140 x 140 x 140 159.152 M 1/81

3 Reference 280 x 280 x 280 1.273 B 1

4 Target 560 x 560 x 560 10.186 B 8

Parallel decomposition

LAMMPS uses a 3-D spatial domain decomposition to distribute atoms among MPI processes. The default decomposition divides the

simulated space into rectangular bricks. The proportions of the bricks are automatically computed to minimize surface-to-volume

ratio of the bricks. LAMMPS will run correctly with any number of MPI processes, but better performance is often obtained when

the number of MPI processes is the product of three near-equal integers. If additional control of the domain decomposition is

needed, the processors command may (optionally) be added to the input files. This command requires three integer parameters that

correspond to the x,y,z dimensions of the process grid. Changes to processors may require updates to the job submission script so

that the correct number of MPI processes is started. Refer to the LAMMPS documentation for more information about the

processors command. The parameters of the LAMMPS input file may not be modified except for the addition of a processors

command.

Job submission

The essential steps are:

1. add symlinks to the files that are common to all runs. These files are the LAMMPS configuration file input.in and the

data/forcefield descriptions that are common to the SPC/E water simulations and ReaxFF simulations, respectively. These

common files are in benchmark-main.

2. the size-specific simulation parameters are in the file size_cmd.txt. (See also Table above.) This file contains the information

on the number of times the simulation cell is replicated in x, y, and z directions.

3. run the job. For the CPU-only runs, please refer to run_cpu.bsub and for the GPU accelerated runs please refer to

run_gpu.bsub.

Results

For both the SPC/E water and ReaxFF simulations, the results obtained with GPU-acceleration set the reference results that must

be met or exceeded. For the SPC/E water simulations, we additionally provide CPU-only results to validate the results obtained

using GPU-acceleration. The validate.py script can be used for this task. For the ReaxFF simulations, we only provide results

using GPU-acceleration. The figure out merit (FOM) is atom-steps/sec. The validate.py script also prints the FOM.

The # Nodes below indicates the number of Summit nodes that were used. The job submission script(s) and/or the log files give a

finer breakdown of the number of cores and GPUs used.



Reference performance on Summit

SPC/E water simulations

Index Size # Atoms # Nodes Capability factor FOM (atom-steps/sec/106)

0 Tiny 5.308 M 1 1/83 27.7

1 Small 42.467 M 8 1/82 94.7

2 Medium 339.738 M 64 1/81 146.7

3 Reference 2.7179 B 512 1 1872.2

4 Target 21.743 B 4096 8 4957.7

Note on validation

For the SPC/E benchmark, the results from the CPU-only runs can be used as a reference to check the correctness of the results on

the proposed systems, presumably using accelerators. As an example, consider the Tiny benchmark noted above. The 0_tiny

directory has two files, lammps_benchmark_gpu.3120976 and lammps_benchmark_cpu.3120975. The first is the log produced using

GPU acceleration, and second file is the log produced using a CPU only (the reference). These files become inputs to the

validate.py script under benchmarks. The example output looks as follows.

python ../../validate.py --input lammps_benchmark_gpu.3120976 --rfp lammps_benchmark_cpu.3120975

Checking: lammps_benchmark_gpu.3120976 against lammps_benchmark_cpu.3120975 for correctness.

Checking energy breakdown. Ignoring the following fields: Pxx, Pyy, Pzz

LAMMPS run passed all validation with a FOM of 27664569.92469448 atom-steps/  

Note that the validate.py script can take other options, such as including the components of the pressure tensor into the

validation (turned off by default) or changing the threshold for agreement (default is 0.1). To user pressure tensor data, for

example, in the development phase of the machine, please remember to turn on output of pressure tensor information during the

LAMMPS runs (turned off by default in the scripts provided with this benchmark.

PETN ReaxFF simulations

Index Size # atoms # Nodes Capability factor FOM (atom-steps/sec/106)

0 Nano 2.487 M 1 1/83 15.2

1 Tiny 19.894 M 8 1/82 110.9

2 Small 159.152 M 64 1/81 886.1

3 Reference 1.273 B 512 1 6564.7

4 Target 10.186 B 4096 8 46442.5

Reporting

Benchmark results should include projections of the FOM for the target problem size. The complete hardware configuration needed

to achieve the estimated timings must also be provided. For example, if the target system includes more than one type of compute

node, then report the number and type of nodes used to run the benchmark. For the electronic submission, include all the source

and makefiles used to build on the target platform and input files and runscripts. Include all standard output files.


